Journey to Space (2015) Movie Script

1
We are the species that explores,
that fashions vessels
to carry us into the unknown.
We sailed the planet of our birth,
saw its wonders and made it home.
And it wasn't enough.
We built flying machines
to explore higher, faster, farther.
Heroes flew them beyond
what once seemed possible.
And it wasn't enough.
In time, we created special craft
that would ferry us
to the edge of space and back.
And as always, there were the few...
brave and brilliant souls...
ready to guide this vessel through dangers
in the name of discovery.
Using the space shuttle,
we built an unprecedented
outpost in the heavens.
We learned in the weightless world
of the International Space Station,
peered into the dark night
of an infinite universe.
And it wasn't enough.
Now we are fashioning vessels to set off
on our greatest adventure
of exploration ever:
to Mars and beyond.
Who knew that 30 years
would go by so quickly?
That these unique spacecraft
would leave in their wake
a public captivated
by their achievements...
...a planet poised at the brink
of deep-space exploration.
As an astronaut, I definitely felt
I was saying good-bye to a long-time
friend when the last shuttle landed.
My name is Chris Ferguson.
I was lucky enough to fly
on three shuttle missions,
one of them on Endeavour.
So it's no surprise
that I wanted to be there
when she was headed for her new home
at the California Science Center
in Los Angeles.
From the look of it,
you might think it took
as much engineering to get Endeavour
through the streets of L.A.
as launching her into orbit.
Watching the orbiter squeeze
through the city neighborhoods,
you could feel just how much the
shuttle had come to stand for,
almost as if it had taken
all of us into space.
I sure don't want the world to forget
this remarkable spacecraft
and those who built it,
and the legacy they left,
lighting the way toward
our next frontier in space.
They're coming.
The shuttle was the first
reusable piloted spacecraft.
And its engineering and software
was so bulletproof,
it could be flown by computers
less powerful than today's smartphones.
Two hundred.
One hundred.
At 235 miles per hour,
the shuttle had
the fastest touchdown speed
of any flying vehicle ever built.
When you glide 220,000 pounds
of spacecraft
to a no-power landing,
the gear hits with a major whomp.
Touchdown.
Conceived in the 1970s
as a kind of winged delivery truck
to build a United States
low-Earth-orbit space station...
Give you a payload I.D. of one.
...the shuttle actually flew
more than a decade beyond
original expectations.
It was the shuttle program
that allowed us to do
real ongoing work in space,
to put delicate equipment
into orbit and to retrieve
and fix that equipment
when things went wrong.
Orbiters deployed, retrieved and repaired
over a hundred scientific
and communications satellites.
And no missions were more
important to our understanding
of deep space than the
five flights, beginning in 1993,
made to repair and upgrade
the Hubble Space Telescope.
Hubble affirmative.
You have a go for release.
I think history will view
the Hubble Space Telescope
as one of the crowning
achievements in astronomy.
The Hubble gave us an unprecedented
view of both our closest neighbors
and of galaxies
unimaginably far from our own.
Further space telescope
investigations have revealed
that the number of Earth-like planets
capable of harboring liquid water
is vastly greater than
scientists once calculated.
In 1995, the shuttles began
a new era of
international space exploration
when Atlantis docked, for the first time,
with the Russian MIR station.
Eight inches.
One-oh-point-oh-seven.
One-oh-six.
Four inches.
Now. We have capture.
Altogether, the orbiters
made 11 trips to visit Mir.
These missions established a level
of international cooperation and expertise
that continues to this day.
Though MIR no longer orbits Earth,
the shuttle proved itself
as a brilliant reusable tool
that allowed us to live,
build and do science
in the weightless environment of space.
But the shuttles' truest legacy crosses
the sky above us every 90 minutes.
The International Space Station
could never have been built
without the shuttles' payload
and space-walk capabilities.
Space shuttles and Russian
Soyuz and Proton rockets
made more than 40 flights to construct
the International Space Station...
a true engineering miracle.
All three of my Orbiter missions
were to the ISS.
Modules built by NASA partners in Asia,
Europe and North America,
came together above Earth,
over a period of 13 years,
to create a floating world
longer than a football field
and with more living space
than a six-bedroom house.
A typical ISS mission
requires an astronaut
to live six months onboard.
But some crew members will spend a year
learning even more
about the very real physical
and psychological stresses
of long-term separation from Earth.
These missions and the 15 nations
that designed, built and crew the ISS,
forever changed space exploration
into a cooperative international program
and made a true home
and science lab like no other.
# Wash away my troubles #
# Wash away my pain #
# With the rain in Shambala... #
ISS system designs
and scientific experiments
have spawned a multitude
of Earth-useful discoveries,
including breakthroughs
in water purification
and robotic microsurgery.
But most important, the ISS
is our springboard to the future,
giving us the knowledge and confidence
to sustain human life
as we explore deep space.
# Everyone is helpful #
# Everyone is kind... #
Life on ISS is all about getting
the job done and having a little fun.
# Everyone is lucky #
# Everyone is so kind #
# On the road to Shambala... #
And nationality is mostly
about tasting each other's food.
# Yeah, yeah, yeah, yeah, yeah #
# Ah, ooh, ooh, ooh #
# Ooh, ooh, ooh, yeah #
# Yeah, yeah, yeah, yeah, yeah... #
Through three decades
of camaraderie and dedication,
355 people rode the shuttle into history.
They circled the Earth 21,000 times,
and it all came to seem routine....
until it wasn't.
...one minute, 15 seconds.
Velocity 2,900 feet per second.
Altitude nine nautical miles.
Downrange distance seven nautical miles.
This shuttle mission will launch...
My God!
There's been an explosion.
Flight controllers here looking
very carefully at the situation.
Obviously a major malfunction.
In two accidents that stunned the world,
we lost 14 astronauts.
It was a sobering reminder
that every space flight
is charged with potential danger.
They had a hunger to explore the universe
and discover its truths.
They wished to serve, and they did.
They were pioneers.
The future doesn't belong
to the fainthearted.
It belongs to the brave.
The world mourned, but pushed on,
because the accomplishments
of the space shuttle
and the International Space Station
were full of life-changing promise.
In memory of our lost heroes,
the global space community
pulled together to reignite
the future of both programs.
Who could ask
for a better ending to my career
as an astronaut than getting to fly
the last shuttle mission on Atlantis,
and a final visit to the ISS.
Atlantis launch director,
air to ground one.
Atlantis go.
And so, for the final time, Fergie, Doug,
Sandy and Rex, good luck, Godspeed,
and have a little fun up there.
We're not ending the journey today, Mike,
we're completing a chapter of
a journey that will never end.
You and the thousands of men and women
who gave their hearts,
souls and their lives
for the cause of exploration,
have rewritten history.
Let's light this fire one more time, Mike.
Though the shuttles no longer fly,
I never miss a chance to see Atlantis
at the Kennedy Space Center.
But I came to KSC to get a look
at the next big step
in deep-space exploration,
and it's called Orion.
Here, in the giant operations
and checkout clean room,
the new Orion multi-purposed crew vehicle
is coming together.
What an impressive vehicle.
Look at that... it's beautiful.
It's gorgeous. I'd love to climb in there.
Orion is a true deep-space
exploration craft,
designed to carry astronauts of the future
back to the moon,
to asteroids, and even to Mars.
I've always been drawn to explore
and try new experiences.
Maybe that's why I applied
to be an astronaut.
I'm Serena Aunon, and I am one of the
newer group of astronauts chosen by NASA.
Like the rest of my class,
I'm absolutely honored
and humbled to be here,
and it's great to be a part of this team.
I guess you could say I'm one
of those people for whom
the future has always seemed
an unfolding adventure.
So you can go forward
and backwards in the procedure
just by using
this toggle switch over here.
Yes, that, exactly.
Learning from astronauts,
like Lee Morin, who have
already spent weeks in space,
gives you a great sense of confidence.
The Orion mock-up provides
astronauts in training,
like Serena, a chance
to learn flight procedures,
and also give feedback
to perfect new systems.
This should be a piece of cake for Serena,
since my shuttle's ten screens
and more than a thousand switches
have been streamlined
to just three screens
and 60 switches on Orion.
Hey, Lee, you can open
the helium cross-feed valve.
Okay, we got that, so go ahead
and send that command
- on the helium cross-feed valve.
- All right, copy that.
And the shuttle's hundred pounds
of flight manuals and checklists
have been reduced to...
well... zero, since Orion's
are all on computer.
Stand by, and we'll evaluate.
But even with all these improvements,
to get Orion into deep space,
we're gonna need a bigger rocket.
When NASA's giant space launch system,
built by Boeing, is complete,
the rocket will stand
as tall as a 38-story building
and make more than
nine million pounds of thrust,
enough to lift 22 elephants into space.
For deep-space expeditions,
the SLS will need to lift
five key mission components
beyond low-Earth orbit.
Since Orion is too cramped
for a six-month journey to Mars,
one solution being developed
is an inflatable habitat
to house the crew en route.
A solar electric
propulsion device will provide
continuous power
for the round-trip journey.
A lander craft will carry the
crew from their orbit above Mars
down to the planet's surface.
Months later, an ascent vehicle
will lift the crew back up
to the orbiting Orion
for the return trip to Earth.
But even using the most sophisticated
future spacecraft, a two-and-a-half year
round-trip journey to Mars
will present new challenges
to the human body.
I wanted to thank the Indiana
State Museum for having me here.
It is an absolute pleasure.
As a medical doctor with a
specialty in aerospace medicine,
I am particularly interested
in keeping astronauts healthy
as we head into deep space
for long periods of time.
Our experience with more
extended weightlessness
on the ISS has shown us that the
human body will face challenges
during lengthy journeys to deep space.
Key issues are muscle and bone loss,
which can start after just
a few days of weightlessness,
along with degrading
of vision for some astronauts.
We now know that exercise is the antidote
for most problems
caused by weightlessness.
And I mean exercise...
about two hours a day.
But, even so, the first explorers to Mars
will need to rest at least a few days
after landing on the planet
to readjust to walking,
though Mars has less than
40% of Earth's gravity.
Radiation is another risk in deep space.
Radiation from our sun's solar storms
is one source of danger.
But cosmic radiation, which
permeates all of deep space,
is another ever-present
challenge to human health.
Sections of Orion,
as well as the transit habitat,
will have to serve as a shelter
in the case of a major solar flare.
In the Arizona desert,
an Orion mock-up is being drop-tested
to evaluate reentry systems.
On returning from deep space,
Orion will enter our atmosphere
more than 50% faster
than shuttles or Soyuz capsules,
and generate five times more heat,
so perfecting her parachute deployment
and heat shield is key to crew survival.
At the Kennedy Space Center,
Orion is being prepped
for an uncrewed
test flight into deep space.
This new vessel marks
the first step in over 40 years
to put humans beyond low Earth orbit.
A journey to Mars is on the horizon
because of wide-ranging
international efforts
by both governments
and private enterprise.
Companies from Boeing and Lockheed
to newcomers like SpaceX, Sierra Nevada
and Orbital Sciences
are developing spacecraft
to service the ISS and beyond.
Some private groups
foresee a technically simpler
one-way mission to colonize Mars.
Already thousands have volunteered
to live permanently on the Red Planet.
The demands of going to deep space
will push old designs to new limits.
- Looks good.
- Looks good. Hey.
- New glove. Should be good.
- Sounds good.
My name is Lindsey Aitchison
and I am a spacesuit project engineer
at NASA Johnson Space Center.
I first started thinking
about space flight
when I was four years old,
when I first came to JSC
to take a tour at the visitor's center.
We have pictures of me just
sitting inside this spacesuit,
and I just knew
that's what I wanted to do.
No, dad-gum it.
When the Apollo suits were first done,
those were very short-duration EVAs.
We didn't have a lot
of mobility in that suit,
so when you see
those astronauts hopping around
on the lunar surface,
it's not because they themselves
are clumsy or that the gravity
is just impossible to deal with.
We didn't give them enough
mobility in the suits.
So we learned a lot from that.
For the next generation suit,
there's still a lot that we don't know
about what it's going to be like to live
and work on Mars every day.
Once there, you'd be doing EVA,
walking outside on the planet
about every other day.
Once we have the hardware
in-house, we become the experts
of how that hardware works, what it does,
and how it meets the needs
for our next phase of our mission design.
We actually get into the suits,
because the best way
to understand how a spacesuit moves
is to be inside of it and work it yourself.
I'll be asking Richard
to perform specific tasks.
And what I'm looking at is:
What is his gait like?
And so I'm watching how
the bearings in the hip move
and how the bearings in the waist move.
And by comparing natural body
motion to suited body motion
we can start to tweak the design
of the suit to make it more natural.
So that's what we're
focusing on for exploration...
is how do you walk, how do you
bend, how do you kneel,
how do you do all
those geology-type tasks?
So, one of the big problems
they had in Apollo
was all of that dust on the lunar surface.
It stuck to everything.
When the guys would come back
inside of the lunar module
at the end of their EVAs,
taking off their suits,
there was dirt everywhere...
there was dirt on themselves.
It was just gross, right?
And that dirt is actually pretty
harmful... the lunar dirt...
specifically, to breathe in
for long periods of time,
so, long-duration missions,
we wouldn't want to
bring that dirt inside
with us all the time.
All right, Richard. Nice job.
Time to come on in.
So one of the key
concepts we're looking at
for lunar and even Martian missions
is using what we call a suit port.
The idea of a suit port
is that you have this plate
that becomes your pressure seal
between the vehicle
and your suit,
so when you're not using the suit,
it stays outside the entire time.
It is physically attached to the vehicle so
you can come in and out of your space suit
without ever having to physically
go into an air lock like we do today.
Welcome home, Richard.
How'd the suit feel?
Feels good.
Outstanding. Strong work out there.
Driving a space
exploration vehicle on dry land
is great training for deep-space
missions of the future.
But driving a mini-sub
was even more exacting.
No, there are no liquid oceans on Mars,
but before setting out for the Red Planet,
astronauts may make test
missions to nearby asteroids.
A mini-sub resembles the kind of craft
we will use to explore asteroids,
and the ocean matches
the zero gravity of space.
This NEEMO 16 mission marks
the 16th time NASA has trained
at the Aquarius lab,
which is anchored 60 feet underwater,
off Key Largo in Florida.
NASA aquanauts live in the lab
for up to two weeks
without coming to the surface.
This allows us to work the entire day
and only decompress once
at the end of the mission.
Any mistakes here
can have real consequences,
exactly as in deep, inhospitable space.
Since asteroids appear
to have changed very little
since they first formed,
they could tell us a lot
about our early solar system.
Ultimately, we may develop
space tools to capture
and reposition a small asteroid
to orbit our moon.
This would allow for easier study,
and also develop our ability
to deflect a larger asteroid
that was on a collision course with Earth.
This Olympus inflatable habitat,
designed by Bigelow Aerospace,
is a look at the future
of living in space.
Jay, this is amazing. How big is that?
Thanks. Yeah, it's really big.
It's about 2,250 cubic meters
interior volume, which is
a little over twice the size
of the International Space Station.
And it looks like it's, like,
40 feet tall or somethin'.
Yeah, it's probably 45 or 50.
It's really big.
Once you get into space,
you just inflate it with air?
Right, we bring up huge compressed air
tanks that bring up large volumes of air.
Um, this expands out so the
inside is about 16 meters
in diameter, and the outside's
a lot bigger than that.
It's surprising that an inflatable habitat
can protect its crew against
micrometeorites and radiation,
but that's what tests have shown.
The immense volume of Olympus
will provide ample work areas
as well as living space
to help maintain crew morale.
Supply craft to provide food, fuel,
and radiation-protective living
space will be landed on Mars
well before the first human
expedition is launched.
We don't know exactly what all
the spacecraft will look like,
but concepts are under active development.
Our infatuation with space exploration
is as limitless as space itself.
Without the shuttle, there would be
no International Space Station,
the vital test bed for a future
human expedition to Mars.
And that mission is closer
than you might imagine.
NASA projects we will get
to Mars in the 2030s.
In other words, within the career
of today's young astronauts.
So any of these movies that you see where
people survive even for 20 seconds...
Why go to Mars?
Why not just send more and more
sophisticated robotic vehicles?
I think to explore beyond what is known
is simply at the core of our DNA.
And only a human mission
can tell us definitively
if we can survive and establish
future settlements on Mars.
Astronauts exploring the planet may notice
and learn things robots could not,
things that could help take us
to the next frontiers beyond Mars.
Every 26 months,
there is an optimal window
for launching spacecraft to Mars.
But even using the planets'
orbits to shorten distance
and increase speed, with
currently planned propulsion,
the trip to and from Mars
will take six months...
each way.
Someday, even more exotic plasma
or fusion propulsion
could shorten the journey.
But the first explorers to Mars
will not have that luxury.
Orion can transport up to six passengers,
but for a first trip to Mars,
it would likely carry no more than four.
While going to and from the Red Planet,
Orion and the inflatable habitat
will be the astronauts' life
support home for flight control,
science, and that all-important
physical exercise.
Going to Mars...
getting there, working there,
coming back...
will take nearly three years.
I wonder how that will feel,
to be away from home and friends
and family for so long.
There is no 911 in space.
When Orion nears Mars,
the spacecraft is two years away
from any possibility of help from Earth.
Even radio communications
will take 40 minutes
to send and receive,
so any equipment failures
or other emergencies
must be solved by the crew alone.
Nearly four decades
of robotic exploration on Mars
has blazed a path for humans to follow...
...craft like Pathfinder and Curiosity.
Maybe I'll get to kick the dust
off their tires.
Though it will be incredibly
exciting to land on Mars,
our ongoing training
in sophisticated simulator labs
means it won't feel entirely
unfamiliar when we get there.
Later explorers to Mars might
travel hundreds of kilometers
to mine their own water and hydrogen to
make fuel for their return to Earth.
But first visitors
will have their hands full
making the discoveries that only
a human mission can accomplish.
I don't know if I'll ever get
to walk and work on Mars,
but I may already know
some of those who will.
Someone who dreams of it, just like me.
Humankind has forever
been drawn toward the unknown,
by the simple innate conviction
that, to see the long-hidden
side of the mountain,
to brush the infinite depth
of the sea, might reveal
where we come from and who we are.
When humans do touch and explore Mars,
it will be among the greatest
achievements in history.
But even that won't be enough.
We are the species that explores.
We will fashion new vessels
to carry us still deeper into space,
venturing from our life-giving home
to uncover the secrets of the cosmos
and our own unimagined possibilities.